Study and experimental prototyping of a digital instrument for detection and acquisition with local monitoring on LCD of ionizing radiations using BG51 module and ESP32 microchip
Abstract
This paper presents a novel digital device for ionizing radiation detection in biomedical imaging media. It is designed and built using emerging technologies, in order to provide lower cost and high performance compared to existing biomedical instruments. The BG51 modular sensor is used as an ionizing radiation detector with corresponding pulses as output. Then, the ESP32 microchip acquires and digitalizes the ionizing radiation doses, and an associated 2.4-inch TFT LCD screen, is used as a hardware graphical monitor. A number of real time tests conducted in the laboratory, indicates that the ionizing radiation detection process, varies in the range [10µSv 2mSv]. In addition, the sample size with rate 30 samples per second, is approximately 25 000. Furthermore, the experimental results show the graph of ionizing radiation doses within a real environment where the proposed biomedical instrument is located.
Downloads
Metrics
References
Brown N, Jones L. Knowledge of medical imaging radiation dose and risk among doctors. Journal of medical imaging and radiation oncology. 2013, 57(1): 8-14. https://doi.org/10.1111/j.1754-9485.2012.02469.x
Etard C, Sinno-Tellier S, Aubert B. Exposition de la population française aux rayonnements ionisants liée aux actes de diagnostic médical en 2007. Ints Veille Sanit. 2010.
De Graaf P, Gröricke S, Rodjan F et al. Guidelines for imaging retinoblastoma: imaging principales and MRI standardization. Pediatr Radiol . 2012; 42:2-14. httpts://doi.org/10.1007/s00247-011-2201-5
Street LJ. Introduction to biomedical Engineering technology (3rd ed.) CRC press. http://doi.org/10.1201/9781315370804
Guy C, Ffytche D, An introduction to the principles of medical imaging. Imperial College Press. 2005.
Ammerich M. Les effets des rayonnements sur l’être humain: est-ce que ça mal docteur?: la radioactivité sous surveillance: Et autres notions en radioprotection. Les Ulis: EDP Sciences. 2021: 28-40. httpts://doi.org/10.1051/978-2-7598-0992-9-005
Kis D, Persa E, Szatmari T, Antal L, Bota A, Csorda Ibarbara, Hargitai R, Jezso B, Kis E, Mihaly J, et al. The effect of ionising radiation on the phenotype of bone marrow-derived extracellular vesicles. J. Radiol. 2020: 20200319, 93(1115). http://doi.org/10.1259/bjr.20200319.
Francky K. B. S, D. Henri, Euloge B. T, O. Moise, Timothée M. Connaissances des Prescripteurs en Radioprotection des Patients en Centrafrique. Eur. Sci. J. ESJ. 2019 : 15(12). http://doi.org/10.19044/esj.2019.v15n12p1.
Ongolo-Zogo P, Nguehouo MB, Yomi J, Nko’o Amven S. Connaissances en matière de radioprotection : enquête auprès des personnels des services hospitaliers de radiodiagnostic, radiothérapie et médecine nucléaire à yaoundé-Cameroun. Radioprotection. 2013, 48(1), 39-49. http://doi.org/10.1051/radiopro/2012017
Blkissou AD, Pefura-yone EW, Endale Mangamba LM, Onana Ngono I, Poka Mayap V, Evouna Mbarga A, Assamba Mpom SA, Kanko NF, Fodjeu G, Tagne Kamdem PE, Fogang D, Kuaban C. Residual pleural opacity in patients trated for pleural tuberculosis in Yaounde. Revue de pneumologie clinique. 2015, 72(2), 115-121. http://doi.org/10.1016/j.pneumo.2015.09.004
Leclerc JC, Beregi JP. Quality in radiology and medical imaging : State of art. Journal d’imagerie diagnostique et 2019, 2(2), 114-117. https://doi.org/10.1016/j.jidi.2019.01.006
Lévêque L, Bosmans H, Cockmartin L, Liu H. State of the art : Eye-tracking studies in medical imaging. IEEE Acess. 2018, 6, 37023-37034. http://doi.org/10.1109/ACCESS.2018.2851451
Kombaev TSh, Artemov ME, Zefirov IV. Designing radiation protection for the scientific equipment complex of the earth’s remote sensing spacecraft. Engineering journal: Science and innovation. 2019, 5(89). Doi:10.18698/2308-6033-2019-5-1878
Laal M, Innovation process in medical imaging. Procedia-Social and Behavioral Sciences, 2013, 81: 60-64. https://doi.org/10.1016/j.sbspro.2013.06.388
Bottollier-Depois JF, Clairand I, Donadille L, Rannou A. Dosimétrie individuelle pour l’irradiation externe : évolution des pratiques et des techniques. Radioprotection, 2007, 42(4): 477-487. http://doi.org/10.1051/radiopro:2007033
Salomaa S, Jourdain JR, Kreuzer M, Jung T, Repussard J. Multidisciplinary European low dose initiative: an updapte of the MELODI program. International Journal of Radiation Biology. 2017, 93(10): 1035-1039. https://doi.org/10.1080/09553002.20017.1281463
Paulo G, Damilakis J, Tsapaki V et al. Diagnostic reference levels based on clinical indication in computed tomography: a literature review. Insights Imaging. 2020, 11(96). https://doi.org/10.1186/s13244-020-00899-y
Akber AA, Wiggins MB. A Review of Dose Rate Meters as First Responders to Ionising Radiation. J. Radiat. Prot. Res.2019, 44(3): 97-102. http://doi.org/10.14407/jrpr.2019.44.3.97
Garcia-Sanchez AJ, Angosto EAG, Riquelme PAM, Berna AS. Ionizing radiation measurement solution in a hospital environment. Sensors. 2018:510, 18(2). https://doi.org/10.3390/s18020510
Mbarndouka Taamté J, Kountchou Noubé M, Bodo B, Tchuente Siaka YF, Nducol N, Folifack Signing VR, Tagne Mogue RL, Saïdou. International Journal of Energy and Environmental Engineering. 2021. https://doi.org/10.1007/s40095-021-00415-y
Owoundi Etouké P, Nneme Nneme L, Mbihi J. ESP32-Based Workbench for Digital Control Systems of Duty-Cycle Modulation Buck Choppers. International Journal of Scientific Research in Computer Science and Engineering. 2020, 8(6): 62-67
Radiation Click. Radiation Click 4036 radiation is a click board based on BG51 radiation sensor. available on-line 21 September 2021 in http://www.mikroe.com/radiation-click.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.