A Brief review of features of copper indium disulphide (CuInS2) nanomaterial for quantum dot solar cell

  • Nitya Garg Department of Physics, Sarala Birla University, Ranchi, Jharkhand-835103, India
Keywords: Nanomaterials, Copper indium disulphide, Quantum dot solar cell, Synthesis techniques, Photovoltaic properties


Copper indium disulphide CuInS2 (CIS) is found to be an interesting nanomaterial belong to group I-III-V for quantum dot solar cell (QDSCs) application due to low toxicity, multiple exciton generation effect, high light absorption in the visible spectral range, appropriate band gap that coordinate well with the solar spectrum, unusual radiation tolerance, noticeable defect tolerance and low cost. Properties of this material that makes it important for use in quantum dot solar cell is also discussed in this paper. This paper summarizes the research going on in the field of synthesis of CuInS2 nanomaterials reported by different authors across the globe. Optical and photovoltaic properties of reviewed CIS QDSCs is also highlighted in this paper.


Download data is not yet available.


Metrics Loading ...


Hanna MC, Nozik AJ. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics. 2006;100(7).

NREL, Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory, 2022. https://www.nrel.gov/pv/cell-efficiency.html.

Ye M, Gao X, Hong X, Liu Q, He C, Liu X, Lin C. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy & Fuels. 2017;1(6):1217-1231.

Braunger D, Hariskos D, Walter T, Schock HW. An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Solar energy materials and solar cells. 1996;40(2):97-102.

Wang D, Zheng W, Hao C, Peng Q, Li Y. General synthesis of I–III–VI 2 ternary semiconductor nanocrystals. Chemical communications. 2008(22):2556-2558.

Kolny-Olesiak J, Weller H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS applied materials & interfaces. 2013;5(23):12221-12237.

Kumar DK, Kříž J, Bennett N, Chen B, Upadhayaya H, Reddy KR, Sadhu V. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies. 2020;3:472-481.

Senthamilselvi V, Saravanakumar K, Jabena Begum N, Anandhi R, Ravichandran AT, Sakthivel B, Ravichandran K. Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—a comparative study. Journal of Materials Science: Materials in Electronics. 2012;23:302-308.

Chu M, Du Z, Zhang Y, Li L, Jiao S, Azad F, Su S. Enhanced photovoltaic performance of quantum-dot-sensitized solar cells using Graphene/Cu2-xSe composite counter electrode. Journal of Alloys and Compounds. 2021;851:156869.

Zhou M, Shen G, Pan Z, Zhong X. Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells. Journal of Energy Chemistry. 2019;38:147-52.

Ilaiyaraja P, Rakesh B, Das TK, Mocherla PS, Sudakar C. CuInS2 quantum dot sensitized solar cells with high VOC≈ 0.9 V achieved using microsphere-nanoparticulate TiO2 composite photoanode. Solar Energy Materials and Solar Cells. 2018;178:208-222.

Chen C, Ling L, Li F. Double-sided transparent TiO 2 nanotube/ITO electrodes for efficient CdS/CuInS 2 quantum dot-sensitized solar cells. Nanoscale Research Letters. 2017;12:1-7.

Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q. Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells. Chemical Communications. 2013;49(37):3881-3883.

Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS 2 quantum dots. Inorganic Chemistry Frontiers. 2021;8(4):880-897.

Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horizons. 2021;6(9):676-695.

Zhang T, Long M, Yan K, Zeng X, Zhou F, Chen Z, Wan X, Chen K, Liu P, Li F, Yu T. Facet-dependent property of sequentially deposited perovskite thin films: chemical origin and self-annihilation. ACS Applied Materials & Interfaces. 2016;8(47):32366-32375.

Qin Y, Song J, Qiu Q, Liu Y, Zhao Y, Zhu L, Qiang Y. High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells. Journal of Alloys and Compounds. 2019;810:151970.

Yin WJ, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced materials. 2014;26(27):4653-4658.

Mahmoodpour S, Heydari M, Shooshtari L, Khosroshahi R, Mohammadpour R, Taghavinia N. Slot-Die Coated Copper Indium Disulfide as Hole-Transport Material for Perovskite Solar Cells. Sustainability. 2023;15(8):6562.

Lalpour N, Mirkhani V, Keshavarzi R, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Gao P. Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer. Scientific Reports. 2023;13(1):6368.

Zhou R, Niu H, Zhang Q, Uchaker E, Guo Z, Wan L, Miao S, Xu J, Cao G. Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. Journal of Materials Chemistry A. 2015;3(23):12539-49.

Chang CC, Chen JK, Chen CP, Yang CH, Chang JY. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach. ACS applied materials & interfaces. 2013;5(21):11296-11306.

Wang Z, Zhang X, Xin W, Yao D, Liu Y, Zhang L, Liu W, Zhang W, Zheng W, Yang B, Zhang H. Facile synthesis of Cu–In–S/ZnS core/shell quantum dots in 1-dodecanethiol for efficient light-emitting diodes with an external quantum efficiency of 7.8%. Chemistry of Materials. 2018;30(24):8939-8947.

Chuang PH, Lin CC, Liu RS. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS applied materials & interfaces. 2014;6(17):15379-15387.

Nam DE, Song WS, Yang H. Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS 2/ZnS quantum dots with high quantum yields. Journal of Materials Chemistry. 2011;21(45):18220-18226.

Deng D, Chen Y, Cao J, Tian J, Qian Z, Achilefu S, Gu Y. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chemistry of Materials. 2012;24(15):3029-3037.

Xia C, Wu W, Yu T, Xie X, Van Oversteeg C, Gerritsen HC, de Mello Donega C. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS nano. 2018;12(8):8350-8361.

Leach AD, Macdonald JE. Optoelectronic properties of CuInS2 nanocrystals and their origin. The journal of physical chemistry letters. 2016;7(3):572-583.

Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chemistry of materials. 2008;20(20):6434-6443.

Zhong H, Lo SS, Mirkovic T, Li Y, Ding Y, Li Y, Scholes GD. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS nano. 2010;4(9):5253-5262.

Van Der Stam W, Berends AC, Rabouw FT, Willhammar T, Ke X, Meeldijk JD, Bals S, de Mello Donega C. Luminescent CuInS2 Quantum Dots by Partial Cation Exchange in Cu2–x S Nanocrystals. Chemistry of Materials. 2015;27(2):621-628.

Nose K, Soma Y, Omata T, Otsuka-Yao-Matsuo S. Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species. Chemistry of Materials. 2009;21(13):2607-2613.

Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y. Synthesis of Cu− In− S ternary nanocrystals with tunable structure and composition. Journal of the American Chemical Society. 2008;130(17):5620-5621.

Han S, Kong M, Guo Y, Wang M. Synthesis of copper indium sulfide nanoparticles by solvothermal method. Materials Letters. 2009;63(13-14):1192-1194.

Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chemistry of Materials. 2009;21(12):2422-2429.

Liu S, Zhang H, Qiao Y, Su X. One-pot synthesis of ternary CuInS 2 quantum dots with near-infrared fluorescence in aqueous solution. Rsc Advances. 2012;2(3):819-825.

Chen Y, Li S, Huang L, Pan D. Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots. Inorganic chemistry. 2013;52(14):7819-7821.

su Kim Y, Lee Y, Kim Y, Kim D, Choi HS, Park JC, Nam YS, Jeon DY. Synthesis of efficient near-infrared-emitting CuInS 2/ZnS quantum dots by inhibiting cation-exchange for bio application. RSC advances. 2017;7(18):10675-10682.

Chen Y, Li S, Huang L, Pan D. Low-cost and gram-scale synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale. 2014;6(3):1295-1298.

Arshad A, Akram R, Iqbal S, Batool F, Iqbal B, Khalid B, Khan AU. Aqueous synthesis of tunable fluorescent, semiconductor CuInS2 quantum dots for bioimaging. Arabian Journal of Chemistry. 2019;12(8):4840-4847.

Jain S, Bharti S, Bhullar GK, Tripathi SK. Synthesis, characterization and stability study of aqueous MPA capped CuInS2/ZnS core/shell nanoparticles. Journal of Luminescence. 2022;252:119279.

Stefan M, Leostean C, Toloman D, Popa A, Pana O, Barbu-Tudoran L. Spectroscopic and Morpho-Structural Characterization of Copper Indium Disulfide–Zinc Oxide Nanocomposites with Photocatalytic Properties. Analytical Letters. 2023;56(2):183-199.

Sugan S, Baskar K, Dhanasekaran R. Hydrothermal synthesis of chalcopyrite CuInS2, CuInSe2 and CuInTe2 nanocubes and their characterization. Current Applied Physics. 2014;14(11):1416-1420.

Sawant JP, Shaikh SF, Kale RB, Pathan HM. Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: a review. Engineered Science. 2020;12(2):1-12.

Sharma R, Shim S, Mane RS, Ganesh T, Ghule A, Cai G, Ham DH, Min SK, Lee W, Han SH. Optimization of growth of ternary CuInS2 thin films by ionic reactions in alkaline chemical bath as n-type photoabsorber layer. Materials Chemistry and Physics. 2009;116(1):28-33.

Jara DH, Yoon SJ, Stamplecoskie KG, Kamat PV. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chemistry of Materials. 2014;26(24):7221-7228.

Peng Z, Sun Z, Ning Z, Liu Y, Chen J, Li W, Qiu W, Chen J, Liu Z. Interface connection modulation by heating treatment for photovoltaic performance enhancement on CuInS2 quantum dot sensitized solar cells. Journal of Alloys and Compounds. 2020;817:153351.

Arriaza-Echanes C, Campo-Giraldo JL, Quezada CP, Espinoza-González R, Rivas-Álvarez P, Pacheco M, Bravo D, Pérez-Donoso JM. Biomimetic synthesis of CuInS2 nanoparticles: Characterization, cytotoxicity, and application in quantum dots sensitized solar cells. Arabian Journal of Chemistry. 2021;14(7):103176.

Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q. Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells. Chemical Communications. 2013;49(37):3881-3883.

Chang CC, Chen JK, Chen CP, Yang CH, Chang JY. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach. ACS applied materials & interfaces. 2013;5(21):11296-11306.

A brief review of features of copper indium disulphide (CuInS2) nanomaterials for quantum dot solar cells
How to Cite
Garg N. A Brief review of features of copper indium disulphide (CuInS2) nanomaterial for quantum dot solar cell. Alger. J. Eng. Technol. [Internet]. 2023Dec.28 [cited 2024Apr.17];8(2):138-46. Available from: http://www.jetjournal.org/index.php/ajet/article/view/315